
ÜBERBEAMER
Thesis Project
Eric Mika
 
Masters Degree Candidate NYU / ITP
eric@ericmika.com

Keywords
spatial mapping, projection mapping, Kinect, depth map, point cloud, SLAM, projection, open source,

augmented reality, light, handheld, flashlight, camera, movement, architecture, space, odometry,

openFrameworks, self contained, beamer, überbeamer, peephole, pointing, window, spatial, 3D,

computer vision, intrinsic projection

Abstract
The überbeamer is a handheld projection system designed to function as a bridge between real-world

and virtual surfaces. The projection selectively reveals layers of digital content on walls, floors, ceilings, or

any other flat surface in a spatially consistent way — this means that content is fixed to the space such

that an object projected in one corner of a room will remain in that corner of a room whether or not the

projection is pointed there at any given moment. Beyond revealing and navigating content, the system

also acts as a cursor or brush through which new projected content can be added to the space, or

existing elements can be manipulated. The überbeamer is essentially a read / write flashlight for any

space.

The system does not depend on QR codes or other external markers to keep track of the projection’s

position, nor does it require a pre-recorded three dimensional model of the projection space. Rather, by

pairing the projector with a depth camera (a Kinect, in this case), the überbeamer builds a model of its

environment in real time. Software keeps track of the user’s position relative to the geometry of the room,

and calculates which content should be revealed and how that content should be mapped to appear in a

spatially consistent way. Since the projection is handheld, walking and panning through a physical space

with the device becomes a means of exploration and interaction.

Software development, hardware refinements, and experimentation with interaction models are all

ongoing. Much remains to be discovered (and implemented). In the short term, the überbeamer exists as

a convenient prototype for experimentation with what I am calling intrinsic projection for lack of a term of

art. The long-term goal of the überbeamer project is to build an open-source hardware and software

platform to allow others to realize their ideas by focusing on the creative rather than technical challenges

associated with this novel approach to augmented reality.

May 4, 2011 Page / 1 14

mailto:eric@ericmika.com

Project Description
The überbeamer is a means of making any surface writable. It takes the basic premise of augmented

reality — the mediation of physical space via an overlay digital information — and expands upon it by

introducing a new, universal, and direct means of interacting with a space. Instead of using an iPhone as

a window to an augmented world, the überbeamer flattens the information layer and the surface layer by

using a projector (a.k.a. a beamer) to draw content directly onto any surface. By building and storing a

three dimensional model of an environment on the fly, the überbeamer knows where you are (relative to

where you’ve been) and can project its overlay in a spatially consistent way. Since you’re holding the

projector, it becomes an intuitive navigation interface — just point it where you want to see, or point it

where you want to write.

The system is realized through a chain of

commodity hardware, consolidated into a single

handheld device via a custom-designed

enclosure. (For now, handheld means “sling it

over your shoulder”, not “put it in your pocket”.

See figure 1 for a sense of scale.) Custom

open-source software ties it all together. A

Microsoft Kinect is the keystone that makes the

überbeamer possible. Previously, hand-pointed

dynamic projection systems depended on

external systems to keep track of your location

and heading in the projection space (Cao

2006). Thanks to the Kinect, a primitive sense

of space and orientation is available in a

consumer-grade piece of hardware. Spatial

reconstruction is possible through a computer

vision algorithm called simultaneous

localization and mapping — or SLAM. SLAM

can be implemented through various

combinations of algorithms, but in the case of

the Kinect’s point clouds iterative closest point

(ICP) is used to construct a spatial model. ICP

compares and aligns several frames of point

cloud data from the Kinect’s depth camera,

building a perpetually expanding cloud model

May 4, 2011 Page / 2 14

Figure 1: The überbeamer in hand.

of the environment — so long as the Kinect keeps moving through the space. In addition to mapping

space, SLAM tells you where you are within the model and where the Kinect is pointed. This algorithm is

nothing new, it’s been used in robotics applications in combination with LIDAR (Light Detection And

Ranging) systems since the mid 1980s. The Kinect just brings the integration complexity and costs down

by an order of magnitude, and opens up a range of new interaction possibilities for developers and artists

without the resources of a formal research setting.

The überbeamer builds on the Kinect’s spatial mapping capabilities by adding a projector to the equation.

Careful alignment and stabilization of a Kinect and a projector enable the core functionality of intrinsic

protection — simultaneous re-projection into real space using position information derived from the SLAM

algorithm. The Kinect’s color camera — which is situated alongside the depth sensor — also holds

potential. Ingesting and re-projecting chunks of the environment opens up another layer of interaction

possibilities worth exploring.

Project vs. Platform
There are many disciplines and industries which might find applications for intrinsic projection. Museums,

TV and film, software interface design, team collaboration tools, architecture, construction, and education

all come to mind immediately. The überbeamer integrates a blend of recent and relatively familiar

technologies — I wouldn’t quite call it a fundamentally new medium — but the interaction model is unique

enough that we don’t have a library of “known knowns” or best practices from which to draw.

Given this vague but sincere sense of potential usefulness, the initial goal of the überbeamer project is to

build a hardware and software platform that’s well suited to rapid prototyping and software iteration. There

is not yet a killer app for intrinsic projection, but my hope is that the überbeamer’s open-source hardware

and software design will improve the odds of finding the killer app and building a vocabulary of interface

elements and approaches.

Rather than build a single-purpose system, the überbeamer was designed with as a generic reference

implementation capable of running a range of possible applications. At a fundamental level, I’m building

the platform to satisfy my own curiosity about intrinsic projection and to support a number of application

ideas I have in mind. At a more general level, I’m building the first prototype with ITP students and their ilk

in mind. (Specifically, creative technologists who work in an empirical and iterative way.) In the future,

specific applications or use cases — the natures of which are presently unknown — may be better suited

to more task-specific hardware designs. For example, the enclosure design could be modified for lighter

weight, additional buttons, sound capabilities, etc.

May 4, 2011 Page / 3 14

Hardware Design
The entire hardware setup is as follows. Keep in mind that everything is wrapped up in a hand-held

enclosure: A compact projector mounted in alignment with a Kinect. Both are plugged into a laptop

(mounted in the same enclosure, see figure 2) running a version of the SLAM algorithm optimized for the

überbeamer’s use case, which involves using the aforementioned ICP algorithm for point cloud alignment

instead of the RGB-space feature-tracking techniques employed by most SLAM implementations.

(Software design is discussed at length in the next section.) A few peripheral elements keep everything

running. An Arduino connected to the laptop coordinates a small servo motor to auto focus the projector

based on surface distance information collected from the Kinect. (Integrated autofocus is currently not

available for projectors compact enough to be useful for this application.) A simple two button interface is

also connected to the Arduino. Beyond the act of aiming and sweeping the projector across the room,

these two buttons are the only point of input. Their exact use is up to the application developer, but the

choice of two buttons is inspired by the universal left-click (select) and right-click (context / mode

switching) paradigm. In the prototype unit, a commercially available laptop docking system called a

Henge Dock (see figure 3) simplifies connection of a laptop to the rest of the hardware (and avoids

forcing you to permanently entomb a laptop in the enclosure, or having to fuss with a bunch of wires

every time you want to use the überbeamer). Combining the Kinect, laptop, and projector in close

quarters generates a significant amount of heat. To address this, a cooling fan mounted at the front of the

May 4, 2011 Page / 4 14

Figure 2: The projector and Kinect visible after
removal of the front panel.

Figure 3: The henge dock, which allows for quick
connection and disconnection between the laptop
and the überbeamer.

enclosure and the projector is run in “high altitude

mode”, which increases the projector’s fan speed at

the expense of a bit more noise. (see figure 4)

The SLAM algorithm is too slow to run on every

frame of point cloud data. To address this, the

Arduino is also connected to an IMU (inertial

measurement unit, see figure 5), which combines

two sensors — an accelerometer and a gyroscope.

These sensors run a basic dead reckoning

algorithm to supply the system with inferences about

the user’s movement through space between

“official” updates from SLAM. This creates a more

fluid navigation experience for the user at the expense of some precision. The final consideration in the

enclosure’s design is power management. The initial hope was to make the entire thing wireless, but for

various reasons this isn’t currently feasible. (The various reasons are discussed at length in the

Compromises and Future Improvements section of this paper.) In an effort to make the cable situation as

clean as possible, the power bricks for all of the hardware in the system are contained inside the rear of

the enclosure. (see figure 6) A single AC plug on the exterior of the enclosure supplies all of the hardware,

allowing for “one plug” setup of the entire system, along with one switch to turn everything off and on at

once. Figure 7 gives an overview of the hardware behind the überbeamer.

May 4, 2011 Page / 5 14

Figure 4: A cooling fan installed on the top of the
projector pod.

Figure 5: IMU (Gyroscope and accelerometer to
assist the ICP algorithm.)

Figure 6: AC adepters in the rear power pod.

May 4, 2011 Page / 6 14

Henge Dock

Projector

Kinect

RGB
Camera

Depth
 Camera

Laptop

Arduino

IMU
(Inertial Measurement Unit)

Accel-
erometer

Gyro-
scope

Control Buttons

Secondary
Button

Primary
Button

Cooling Fan

Control software

Pow
er Strip

Laptop
Brick

Kinect
Brick

Projector
Brick

Arduino
Brick

Single line
to AC power

Power

Data

Autofocus
Servo

Fan
Brick

Figure 7: Hardware overview

Laptop

Kinect

Projector

Power

Auto focus

Cooling fan

Arduino and IMU

IMU

Cooling Fan

The enclosure was designed around the dimensions of

my 15” laptop computer. The laptop is stored in the

“spine” of the enclosure, through a hinged, latching

door in the rear of the enclosure. (See figure 8.) Foam

padding holds it in place, and all of the connections are

made through the henge dock simply by sliding the

laptop into the enclosure with some authority. It’s

unfortunate that supporting more than one laptop

brand / model wasn’t feasible, but the trade-off for not

having to fuss with plugging in a tangle of wires each

time the laptop is taken in or out of the enclosure was

worth it it for the purposes of the prototype überbeamer. (Particularly since I’m likely to be the only user of

this prototype.)

Ergonomics are hit-and-miss. The basic hourglass footprint of the enclosure makes it relatively intuitive to

hold the überbeamer at your side, with the projector pod in front of you and the power pod behind your

back, keeping the unit’s center of gravity close to your own. This works well, since you end up facing in

the direction of the projection. The entire unit is also extraordinarily and unreasonably heavy. In order to

realize the one-cable design goal, the user ends up lugging the laptop and all of the AC adapter power

bricks along with them. Technically, you would have enough hardware to do intrinsic projection with just

the items in the front pod (which holds the the projector, Kinect, Arduino and — but this would mean a

bundle of cables, all of which would have to be of significant length if any mobility is to be realized. Both

approaches seem mediocre, I opted for the single-cable solution partially by underestimating the total

weight of the enclosure, and because managing a bundle of cables is an impediment to the user’s

freedom of movement and discourages quick experiments with the system. Subsequent revisions might

use a frame-based construction via aluminum support rails to hold everything in alignment instead of the

current prototype’s extremely heavy acrylic monocoque construction.

Software Design
As of this writing, software development is still very much under way. Building the enclosure was more

involved than anticipated, and ended up eating into time schedule for code work. Therefore, some details

in this section will be slightly more vague than I would like, or will discuss techniques and decisions that

are planned / intended courses of action rather than implemented solutions.

The basic structure of the software systems are shown in figure 9. The software layer can be broken

down into two groups, the library / API layer, which is concerned with making intrinsic projection functional

May 4, 2011 Page / 7 14

Figure 8: Loading a laptop.

and easy to integrate, and the application / user layer, which involves building new interfaces and

functionality on top of a working intrinsic projection implementation. The long-term vision for the system is

to build a library that abstracts away the configuration and tracking involved in intrinsic projection and

makes a dynamic drawing surface available to a range of applications and development environments. In

the short term, the ambition is just to get the system working reasonably well in any capacity.

Basic program flow involves taking depth data from the Kinect into openFrameworks via the libfreenect

drivers. From there, the depth bitmap is converted from pixel space to world space and perspective

correction is applied. Next, depth measurements from the center of the point cloud are checked against a

table of stored projector focus values, and a command is sent to the Arduino to turn a servo and keep the

May 4, 2011 Page / 8 14

Software Layer

Hardware Layer

Control
Buttons

Projector Focus
Servo

Kinect

Color Camera

Depth Camera

IMU

Accelerometer

Gyroscope

Library / API Layer

Arduino

Application / User Layer

IMU Processing SLAM

ICP
Processing

Mesh Creation

Projector Auto
Focus Control

libfreenect

Control Button
Processing

Projection
Mapping

Microphones

Figure 9: Software overview

projector in focus. Meanwhile, the SLAM algorithm gets to work on the most recent point cloud. It looks at

the preceding cloud data and figures out how the latest one needs to be translated and rotated to fit into

the larger picture. This is calculated in combination with data from the IMU (gyroscope and

accelerometer), which is used to give the SLAM algorithm a “best guess” from which to start looking for

ideal fit between point clouds. Likewise, since the SLAM algorithm takes more than the 30 milliseconds or

so that we have between frame updates, the same IMU data is used to supply updates regarding the

user’s position and orientation in space until the latest SLAM update arrives. Finally, mesh generation

routines are used to convert the point clouds into polygons for rendering in OpenGL. Generating meshes

from point clouds is a non-trivial problem, but the solution I’m using involves placing the user in a

spherical mesh which is subsequently “stretched” by the point cloud data and subdivided as necessary to

keep resolutions reasonable. This solves some problems (e.g. how to handle unmapped space), but

creates others which will be discussed below. Using the world-space position information derived from

SLAM (the”localization” part), we can position a virtual camera in our model of the room using OpenGL,

matching the focal length and position in such a way that the pyramid of light thrown by the projector in

real space matches the pyramid of vision seen by the camera in OpenGL’s virtual space. This provides

projection mapping / keystone compensation to keep the real and virtual worlds aligned. Finally, pixel

content is drawn as texture data into the polygonal mesh of the space. If a user is actively drawing into

the space or interacting with a dynamic interface element, then perspective-compensation might be

applied to make content projected on surfaces oblique to the user appear correct, even if the content

would appear distorted to someone standing perpendicular to the wall. (For example, someone who calls

up a circular menu on a wall at a steep angle to their position would actually draw a stretched circle that

would look correct from where the user’s standing but incorrect from any other.) It might be necessary to

force certain tool functions to snap to the normals of the surface to avoid slight perspective errors from

accumulating.

SLAM and other spatial reconstruction algorithms are usually able to perform loop closure, which is the

matching, alignment, and subsequent correction of point cloud data between clouds that were not initially

captured in close proximity. Put more simply, imagine you’re mapping a simple, square room. You start at

the door and work your way clockwise around the room, using SLAM to build a map along the way. By the

time you’re coming back to where you’ve started, error has accumulated in the SLAM model and it’s likely

that the most recent pieces of wall you’ve filled into the model is slightly out of alignment with the very first

section of wall modeled when you started. Loop closure involves recognizing these instances and, as its

name implies, closing the loop programmatically. This turns out to be a very challenging problem, and

most solutions involve feature detection techniques that take place in RGB space and not in depth space,

which could present feedback problems with the überbeamer’s projection (and reduces the viability of

working in very low light environments). Instead of dealing with this, the überbeamer uses the spherical

May 4, 2011 Page / 9 14

mesh generation technique described above, where the user starts in an a mesh that’s already closed

and merely stretches / distorts it as they move. This solves most of the loop closure problem, since it

means there are never any open holes to close in the first place, but it creates some problems of its own.

For example, what would happen if a user tries to map a toroidal space? Under what conditions should

the user be able to punch through the mesh? These are the kind of problems for which solutions will have

to evolve as our understanding of the unique demands of intrinsic projection improves.

Research and Influences
The überbeamer’s form factor was inspired by a previous project I created for NIME in the fall of 2010.

This project, called the VHS Can[n]on, took a VCR and turned it into a wearable instrument for sampling

audio-visual loops from VHS cassettes in real time. (See figure 10.) The Can[n]on was played by pointing

the VCR towards a projection screen and playing / stopping VHS tapes. The absurdity of gesturing with

and wearing an appliance was surprisingly appealing. However, the system was constrained by the static

nature of the projector. Regardless of

where you moved during a performance,

you were still limited to the projector’s

stationary and relatively small rectangle of

light. This sense of claustrophobia seeded

the interaction model proposed in my

thesis, in which the projector itself is

handheld and any surface in a room

becomes a canvas for projection. It’s also

easy to imagine more potential

applications for this

platform than the VHS Can[n]on alone, so

I decided to build the überbeamer as a

content-agnostic chain of open-source

hardware and software tools instead of a

singular project. As such, the überbeamer

is “an interface” rather than “the interface”,

and it’s my hope that its most interesting

applications have yet to be realized

With about a month remaining in the

thesis production cycle, a fellow ITP student

brought a project by Xiang Cao et al. from

May 4, 2011 Page / 10 14

Figure 10: VHS Can[n]on

2005 to my attention. Cao’s work on handheld spatial projection mapping represents exactly the

interaction model I had in mind for the überbeamer. This news came too late for development of a

completely new thesis, so I was forced to give up the notion that the überbeamer presented a completely

original and novel mode of interaction and instead emphasize the ways in which recent technology allows

for improvements on Cao’s approach. Specifically, Cao’s implementation depends on an external camera

to track optical markers on a small projector in combination with a hand-built three dimensional model of

the projection space. My implementation uses the Kinect + SLAM / ICP algorithms interleaved with

positioning inferences from an IMU to allow for real-time construction and projection mapping in unknown

environments without external hardware dependencies. Furthermore, Cao did not explore possibilities

surrounding surface ingestion… e.g. use of the Kinect’s RGB camera to grab chunks of the environment

for processing / re-projection. Finally, the überbeamer allows for portability. The entire design is a single

unit slung over a shoulder. It won’t be as compact as Cao’s hand-held projector since the Kinect is bulky

and a powerful laptop is required to run the mapping algorithms. Finally, the überbeamer brings the

possibility of location tagging / persistent content. Again, because of portability and the relative lack of

calibration required for extracting positioning info from a point cloud history, it would be possible to save

layers of projected content that are linked a specific location and could be edited / overwritten on

subsequent visits to the space.

Compromises and Future Improvements
In the course of designing the überbeamer, several aspects of the hardware design and software had to

be compromised or otherwise constrained in order to maintain a reasonable schedule and scope for the

project. The first and perhaps largest compromise was the decision to make the hardware wired instead

of wireless. From my experience with the VHS Can[n]on, it was clear that the set-up time involved in

connecting an unwieldy bundle of cords makes using a device a real production. This discourages spur-

of-the moment experimentation and slows the software iteration process.

At the moment, the deciding factor in the wireless vs. wired decision process is the projector. The current

state of pico projector technology is such that units with power demands low enough to be run off of a

battery of reasonable size and weight are simply too dim and small for the überbeamer’s intended

application. (As of this writing, a state-of-the-art consumer pico projector like the 3M MP160 emits only 32

lumens and tops out around 80" diagonal. In comparison, the Optoma TX330 emits 2200 lumens and is

good for a 302" projection.) Because of the high power demands (225 watts) of the TX330, battery power

is out of the question. However, in the interest of avoiding the cord tangles and long set-up times and

bulky external hardware of the VHS Can[n]on, the überbeamer’s enclosure is designed to carry

everything it needs to operate, so the only external connection required is a single AC power cable. The

May 4, 2011 Page / 11 14

trade-off is a significant weight increase to accommodate a laptop, power bricks, etc., and every extra

pound means the überbeamer will be more difficult to maneuver and more fatiguing to use.

Another initial hope for the überbeamer involved operation outdoors. Unfortunately, the Kinect is

extremely sensitive to IR and doesn’t work well at all in daylight. This means operating the überbeamer at

dusk or even in rooms with large amounts of incident sunlight is not possible. The upside, however, is that

the Kinect works formidably in low light situations, so projecting outdoors at night should not be an issue.

The Kinect also limits possibilities for multi-user interaction. Although building more than one überbeamer

is beyond the scope and time constraints of an ITP thesis project, it still would be nice to consider the

possibility of several people working with their own überbeamers in the same space with the same set of

data. Interference between the Kinect’s infrared dot patterns is likely to make this an impossible scenario.

Finally, running the SLAM algorithm responsible for the überbeamer’s real-time reconstruction of three

dimensional space is extremely processor intensive. A laboratory full of Intel research scientists only

managed to get the algorithm down to about 100ms per frame. To convey fluid movement through a

space, the algorithm would need to run about three times as fast (and that’s not even considering cycles

required for the rest of the application’s functionality). Assuming that this magnitude of improvement is

possible on an algorithm that has already been optimized by experts would be foolhardy. So, instead of

spending time optimizing the algorithm, I opted to use an IMU to provide inferences about spatial

movement between SLAM updates to maintain the illusion of fluid movement through the space. This

introduces more glitches into the user experience than I would like, but it’s a necessary shortcut to get the

system working at all within the time available — for now, fluidity trumps accuracy.

Text entry is another issue that goes unaddressed in this version of the überbeamer. I went with the two-

button, mouse-like interaction approach to keep things as simple and intuitive as possible. Text entry

would require something more elaborate — either a physical keyboard, a projected keyboard, voice

recognition, or some kind of gestural system in the spirit of Palm’s Graffiti system. These are interesting

usability challenges, but are beyond the scope of a first iteration of the platform.

Conclusions
On a long enough timeline, each of the present compromises should prove surmountable. Pico projector

brightness and power consumption will improve. Cameras providing Kinect-like depth maps will become

more compact. CPU speed improvements and other optimizations will shave milliseconds off of the SLAM

algorithm until running in true real time is possible. Until then, the überbeamer is stuck with physical bulk

bordering on absurdity, and a range-limiting tether to line power. For those who would rather not wait for

May 4, 2011 Page / 12 14

practicality to catch up with their interests, the überbeamer can fill their niche with an open-source suite

and an open hardware design for exploring the possibilities of intrinsic projection.

Additional Information and Updates
Ongoing work on the überbeamer project will be documented on my website, uberbeamer.com. Additional

resources will be linked there. Source code is available at github.com/kitschpatrol/uberbeamer.

Acknowledgments
Thanks to my thesis advisors, Nancy Hechinger and Marina Zurkow. Thanks also to my peers in the

redbird and bluebird thesis development groups. My thanks to Dan Shiffman for his help with the ICP

algorithm. I am indebted to the open-source creative coding community, particularly the Processing and

openFrameworks projects.

May 4, 2011 Page / 13 14

Works Cited

Apple Computer, Inc. Macintosh Human Interface Guidelines. New York: Addison Wesley, 1992. Print.

IBM Research. “The Everywhere Displays Project.” <http://www.research.ibm.com/ed/>. Web.
11 April 2011.

Gruber, John. “Leaked Screenshots of Microsoft Office for Mac 2011.” Daring Fireball.
30 March 2010. <http://daringfireball.net/linked/2010/03/30/office-mac>. Web.
11 April 2011.

McCall, Anthony. The Solid Light Films and Related Works. Ed. Christopher Eamon. Evanston, IL: The
Northwestern University Press, 2005. Print.

O’Shea, Chris. Out of Bounds. 2007. Design Museum, London.
<http://www.chrisoshea.org/out-of-bounds>. Web. 11 April 2011.

Sobecka, Karolina. Wildlife. 2006. Brooklyn, NY.
<http://www.gravitytrap.com/artwork/wildlife>. Web. 11 April 2011.

Tsubokura, Teruaki. Shadow Touch. Date unknown. Location unknown.
<http://www.youtube.com/watch?v=sZ8fbp4b3Jw> Web. 11 April 2011.

Xiang Cao, Ravin Balakrishnan. (2006).
Interacting with dynamically defined information spaces using a handheld projector and a pen.

Proceedings of UIST 2006, ACM Symposium on User Interface Software and Technology. p. 225-234.

Xiang Cao, Clifton Forlines, Ravin Balakrishnan. (2007). Multi-user interaction using handheld projectors.
Proceedings of UIST 2007, ACM Symposium on User Interface Software and Technology. p. 43–52

Xiang Cao, Jacky Jie Li, Ravin Balakrishnan. (2008).
Peephole pointing: Modeling acquisition of dynamically revealed targets. Proceedings of CHI 2008,
ACM Conference on Human Factors in Computing Systems. p. 1699–1708.

May 4, 2011 Page / 14 14

http://www.research.ibm.com/ed/
http://daringfireball.net/linked/2010/03/30/office-mac
http://www.chrisoshea.org/out-of-bounds
http://www.gravitytrap.com/artwork/wildlife
http://www.youtube.com/watch?v=sZ8fbp4b3Jw

